Chapter 8

Multiple Regression Models in Forecasting

Multiple regression analysis extends the power of simple
regression to deal with more complex business situations
where sales depend on two or more causal influences.
Computers handle the calculations readily. Therefore, this
chapter concentrates on (1) framing multiple regression
hypotheses to test and (2) analyzing the meaning of
computer generated results.

8.1 Functional Form of Multiple Linear Regression

To expand the simple linear regression model to include
two or more explanatory independent variables (causal
influences), the estimated regression equation is extended
from:

Yi=b1 +b2Xi+ei (8.1)
to:

Yj=by +bpXjp + b3Xj3+...+ ijij ...+ bXix (8.2)
+ ei

In an elementary sense, by is the predicted value of sales,
Yjc, where all the X;’s are zero. Since this casé is not likely
to happen in sales forecasting, we regard bj more generally
asa helght adjustment constant. The other coefficients (b,,
b3, ..., bg) measure the effect each independent variable
has on sales More rigorously, by measures the changes in
sales, Yjc, per unit change in Xj;, with all other X;; ij'$ held
constant (in the statistical sense). Of course €; continues to

represent all available information on the ways in which the

fitted regression model fails to properly explain the
observed dispersion in the sales variable, i.e., ¢ = (Y; —
)

chs in simple regression, for multiple analysis we first
determine the economic and business factors which cause
changes in sales. Next, we find the appropriate numerical
time series which embody these factors. Finally, we
describe mathematically the structure by which the

explanatory time-series variables are expected to affect

sales. We might begin with the simple linear form of

Equation 8.1 but may wish to extend it to the multiple
analysis embodied in Equation 8.2.

Similarly, to complete the specification of the multiple
regression model, we extend the underlying assumptions for
analysis, as follows:

1. Linearity. The multiple regression equation is based
on the premise of a linear relatlonshxp between sales, Yj,
and all the explanatory variables, Xj:'s.

2. Normality. For each set of the explanatory X.j values,
the dispersion of points.about the regressionline is
normally distributed—i.e., the ¢, are normally dispersed.

3. Homoscedasticity. There is a uniform scatter of points
around the regression line—ie., constant variance
throughout the range of X.; observations.

4. Independence. The values of the ¢; (residual error) are
statistically independent (i.e., independence of successive
observations) of one another such that the expected value
of € is zero and its variance is constant for all i
observations.

5. Non-multicollinearity. No linear relationships exist
between (among) any of the explanatory, X.j, variables.

8.2 Case Study: Process Control Company

Table 8.1 presents quarterly seasonally adjusted sales for
Process Control Company in addition to time and two
explanatory variables from the U.S. economy: (1) New
plant and equipment expenditures for manufacturing
durable goods industries and (2) Corporate profits and
inventory valuation. These explanatory variables were
selected since Process Control’s primary markets are inside

the U.S. economic structure; thus consumption of the

company’s output is adjudged a function of these causal
influences.

For three explanatory variables, the general form of the
forecasting equation is:

Yo =by +byXy + b3X3 +bgXy 8.3)
Figure 8.1 shows the output of a regression calculation on a

time-sharing computer console. The following narrative
describes the computer output and is indexed according to
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TABLE 8.1 -- Process Control Company:

Regression Analysis

Seasonally Adjusted Data for Multiple

(1) (2) (3) (4) (5) (6) (7)
Quarter Y Explanatory Variables from United States
Year Sales Economy
(1/10 mi1 | Quarter X2 Quarter X3 X4
dollars) Year New Planté& Year Corp. Time
Equip Expend Profits Trend
Mfg., Dur. & Inven.
(bil. dol.) Value
(bil.dol.)
3-1965 226 1-1966 13.28 1-1965 73.1 1
4- 245 2- 13.98 2- 74.4 2
1-1966 254 3- 14.18 3- 76.5 3
2- 285 4- 14.58 4- 80.3 4
3- 261 1-1967 14.46 1-1966 81.5 5
4- 249 2- 14.26 2- 82.1 6
1-1967 242 3~ 13.92 3- 82.5 7
2- 225 4- 13.71 4- 83.7 8
3- 235 1-1968 14.11 1-1967 78.3 9
4- 225 2~ 13.51 2- 78.0 10
1-1968 216 3- 14.47 3- 78.4 11
2- 224 4- 14.39 4- 80.0 12
3- 245 1-1969 15.47 1-1968 81.1 13
4- 300 2- 15.98 2- 85.4 14
1-1969 327 3- 16.53 3- 85.9 15
2- 298 4- 15.88 4- 84.7 16
3- 286 1-1970 16.40 1-1969 83.0 17
4- 264 2- 16.30 2- 82.8 18
1-1970 233 3- 15.74 3- 79.8 19
2- 224 4- 14.92 4- 73.5 20
3- 228 1-1971 14.21 1-1970 69.3 21
4- 194 2- 14.06 2- 71.5 22
1-1971 193 KE 13.76 3- 72.0 23
2- 210 4- 14.61 4- 66.9 24
3- 223 1-1972 15.06 1-1971 76.6 25
4- 238 2- 14.77 2- 80.1 26
1-1972 273 3- 15.67 3- 78.3 27
2- 287 4- 16.86 4- 79.4 28
3- 287 1-1973 17.88* 1-1972 81.8 29
4- 301 2- 18.70* 2- 86.1 30

*Forecasted from an econometric model.

Source:
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title headings as they appear in Figure 8.1.!
B(J).2 Substituting these partial regression coefficient
values into Equation 8.3, we obtain the predicting model:

Y = —188.721 + 23.6197X, + 1.40147X3 (8.4)
— 1.77628%4

For example, to obtain $320.346 (x10°) sales in fourth
quarter 1972, we substitute 18.70 for X5 (new plant and
equipment expenditures, mfg., dur.), 86.1 for X3
(corporate profits and inventory valuation), and 30 for X4
(time trend):

Y. =-188.721 +23.6197(18.70) + 1.40147(86.1)
— 1.77628(30)
=320.346

If new plant and equipment expenditures had been $1
billion higher, with the other two explanatory variables
remaining the same, then predicted sales would have been
23.6 x 103 higher. Similar analyses can be made for effects
of the corporate-profits-and-inventory-valuation and the
time-trend variables on sales. '

We note here that the relative size of the b; coefficients
is meaningful only in relation to the order of size of the
input units of X.;. That is, the b; could be larger or smaller
depending on tf1e chosen unit]s in which the X.; are
expressed, because the products b; X.: are summeéd to
obtain Y... The size of b; necessary for statistical
significance will be discussed in both the BETA(J) and the
T-STATISTIC sections following. The positive or negative
sign of the b; coefficient, however, must be evaluated
largely from ghe standpoint of economic causality. For
example, we would expect a positive regression coefficient
for almost every income explanatory variable regressed on
sales and a negative regression coefficient for
unemployment regressed on sales. If the sign is opposite
from the expected causal relationship, then check to be
sure causality justifies the observed sign and also check for
nonsignificant or spurious signs due to multicollinearity.

BETA(J). In multiple regression, the partial regression
coefficients, by, b3, by, .. ., by, are interpreted as the net
influence of each causal variable on sales. Since as we
indicated previously the by, b3, by, ..., by each could
have different units (i.e., months, quarters, cents, dollars),
it is difficult to ascertain comparative influences on sales
based on' the b;’s alone. Beta coefficients are one means of
overcoming the scale-factor problem in the X.i’s, so that
direct comparisons of their relative effects on sales can be
made. Beta coefficients are computed using the formula:

BJ = bj (ij/Sy),j =2,3,4,...,k (8.5)

where
b; = partial (net) regression coefficient.
S:x = standard deviation of explanatory variate, Xj.
Sy = standard deviation of sales.

Notice in this form, the beta coefficients are units-free
numbers that are directly comparable.
Interpreting the printout, a beta coefficient is not

determined (N.D.) for Y (sales). For each increase of one
standard deviation in Xy (new plant and equipment
expenditures; mfg. dur.), sales, Y., increases by 0.906944
standard deviation units. For each increase of one standard
deviation in X4 (time trend), sales decrease by 0.458285
standard deviation units.®> The beta coefficient for X3
(corporate profits and inventory valuation) may be
similarly interpreted. Hence, comparing all the beta
coefficients, X5 has the greatest effect on sales, followed in
order by X4 and X3.

XBAR (J). The mean or arithmetic average for each of
the four variables is calculated?®

— XX

Xj= (8.6)
n

where

Xij = observation i for variable ;.
n = number of observations.

S(J). The standard deviation for each variable is found
by$

2(X; — X;)?
ij = ————n—_l— (87)

INDEX OF DETERMINATION. The index (coefficient)
of determination is calculated and interpreted in a way
closely resembling that used for simple regression. The
value is calculated by

Explained Sum of Squares

(8.8)
Total Sum of Squares

RY 234 =

Therefore, 0.774059 of the total variance in sales is
explained by X, X3, and X4 in the multiple linear
regression model set forth in Equation 8.4.

CORRELATION COEFFICIENT. The coefficient of
multiple correlation, R, is the square root of the index of
determination, R2.

CORRELATION MATRIX. This matrix records the
simple linear correlation coefficients between variables, rj;.
For example, Y (sales) and X3 (corporate profits and
inventory valuation) linearly covary to the extent that r =
0.729113, and so on. Notice the multiple correlation
coefficient R = 0.879807 is higher than any of the simple
correlation coefficients for sales with each of the
explanatory variables (0.733197, 0.729113, 0.087043).
Hence this comparison is one indication of how much
better all of the causal variables taken collectively describe
sales than each considered individually.

A second use of the Correlation Matrix is its role
in helping identify the undesirable presence of multi-
collinearity (linear correlation) between explanatory
variables. Although there is no currently developed
statistical test of hypothesis for this purpose, L.R. Klein
suggests the rule of thumb that when a simple correlation
coefficient is less than the multiple correlation coefficient
then any multicollinearity present between the two
variables is “tolerable.”® Using this rule as a basis, in all
cases for the explanatory variables X3, X3, and Xy the

129



130

Figure 8.1
Process Control Company
Multiple Regression Calculations Using

a Time-Sharing Computer

VARIABLE (J) B(J) BETA (J) XBAR (J)

1 (=Y) -188.721 N. D. 249.933

2 (= X5 23.6197 «9069 44 15. 0557

3 'z A=) le 40147 «204006 78.8998

4 'z X -1.77628 ~. 458285 15.5
INDEX OF DETERMINATION (R-SQ) = . 774059
CORRELATION COEFFICIENT (R) = .879807
CORRELATION MATRIX

1 «733197 «729113 .087043

.733197 1 « 539054 « 619085

«729113 « 539054 1 -.079105

. 087043 . 619085 -.079105 1
ACTUAL VS CALCULATED

ACTUAL CALCULATED DIFFERENCE PCT DIFFER

226 225. 62 -.3795%3 -1

245 242.,2 -2.80005 -1.1

254 248,091 -5.90935 -2.3

285 261.088 -23.9124 -9.1

261 2584159 -2.84131 - 1.1

249 252.5 3. 49956 1.3

242 243.253 1.25325 .5

225 238. 199 13. 1985 5.5

235 238. 302 3. 30231 1.3

225 221.934 ~-3.06628 -1.3

216 243.393 27. 3931 . 11.2

224 241.969 17.9693 7.4

245 267.244 22.2439 8.3

300 283. 54 ¢ -16.4597 - 5.8

327 29 5. 455 -31. 5447 -10.6

298 276. 644 -21.3557 - 7.7

286 28 4. 768 -1.23218 ~e 4

264 280.822 16.822 5.9

233 261.141 28. 1414 10.7

224 231. 168 7.168 3.1

228 2060736 -21.2645 -10.2

194 2044 5 10. 4998 S. 1

193 19 6. 338 3.33827 1. 7

210 207. 491 -2.50887 -1.2

223 229.938 6.93797 3

238 226.217 -11.7829 -5.2

273 243.176 -29.8241 -12.2

287 271 049 -15.9514 -5.8

287 29 6. 728 9.72803 3.2

301 320. 346 19. 3459 6

S (J)

33. 548

1.28817
4.88 343
8. 65547



Figure 8.1, page 2

AN ALY S1 S OF VARI AN CE

SOURCE SS DF . MS F

REGRESSION 26135.3 3 8711. 78 29.6915 e
= ERROR 7628.66 26 29 3. 41

TOTAL 33764 29

STANDARD DEVIATION OF ERROR TERM 17.1292

@ CONSULT F TABLE TO DETERMINE SIGNIFICANCE

95%
CONFIDENCE
VARIABLE COEFFICIENT STD ERROR T STATISTIC LIMITS (+,-)
2 23.6197 4. 68176 5. 04505 9. 62569
3 1.40147 «9 73859 1.43909 2.00225
4 -1.77628 . 5888 42 -3.01657 1.21066

De Fo= 26

DURBIN-WATSON STATISTIC' IS 1.16476

o %.@2” ‘m ) o .
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Figure 8.1, page 3

PLOT OF RESIDUALS

HIGH RESIDUAL = 31. 5447
INCREMENT FOR PLOT IS ONE PRINT SPACE = 1.15149
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Figure 8.1, page 4

FIRST ORDER PARTTI AL CORRELATION S

WI THHOLDING EFFECT OF VARIABLE 1

1 0 0 0
0 1 « 0096 «8197
0 « 0096 1 -.2092
0 08197 -02092 1

WITHHOLDING EFFECT OF VARIABLE 2

l 0 « 5829 -.6871

0 1 0 0

« 5829 0 1 - 6242
-.6871 0 -+ 6242 1

WITHHOL DING EFFECT OF VARIABLE 3

1 « 5901 0 «2121
« 5901 1 0 . 7881
0 0 1 0
«2121 7881 0 1

WITHHOLDING EFFECT OF VARIABLE 4

1 8683  .7411 0
.8683 1 <7511 0
C7411 .7511 1 0
0 0 0 1

Predicted Confidence Limits

EINTER VALUE FOR X 2 ?219.695

ENTER VALUE FOR X 3 ?89.7

ENTER VALUE FOR X 4 ? 31
THE 95% CONFIDENCE LIMITS ON THE EXPECTED VALUE OF Y ARE:
Y= 347117 +- 24.2917 UPPER = 371.409 LOWER = 322.825
THE 952 CONFIDENCE LIMITS ON THE INDIVIDUAL VALUE OF Y ARE:

Y= 347.117 +- 42,7828 UPPER = 389.9 LOWER = 304.334
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severity of multicollinearity is accepted as tolerable. Notice
that Klein’s rule is useful only for pairwise considerations.
In examining more than two variables at one time, there is
no definite analytical answer to the question of when we
cannot accept multicollinearity as tolerable.”

If multicollinearity is intolerable in the sense of high
simple correlations between any two explanatory variables,
or in the sense of not being able to get well-determined
partial regression coefficient estimates, what then are the
solutions? Procedures to resolve this problem are major
topics considered in Chapter 9.

ACTUAL vs. CALCULATED. This table first lists in
column fashion the actual values for the dependent sales
variable. Then, using Equation 8.4 and the observed values
of the independent explanatory variables (from Table’8.1),
the calculated Y values are presented. The differences
between actual and calculated sales are recorded in the next
column, Finally, the last column presents the differences as
percentages of the actual sales figures.

ANALYSIS OF VARIANCE. To test the significance of
R, the null hypothesis of no correlation may be accepted or
rejected on the basis of the F test, where the F ratio is
computed by

_ Explained variance _ Regression MS 8.9

"~ Unexplained variance ~ Error MS 8.9)
where

MS = SS/DF.

With a 0.05 level of mgmﬁcance and degrees of freedom
(D.F.) equal 3 and 26, the critical F table value is 2.89.
Thus, when this figure is compared to the computed F =
29.69, the hypothesis of no correlation is rejected.

STANDARD DEVIATION OF ERROR TERM. The
standard deviation ‘of error term is another name for .the
standard deviation of regression. In multiple regression, just
as in simple regression, it is a measure of dispersion of the
calculated values of the sales variable from the actual
values. Thus it is a measure of average scatter of Y; values
about the line of regression and is computed by

Y. —Y:.)2
Sy.234 f\l—(—'——lcl =J§S-m (8.10)

n—m n—m

where

Yj = actual sales observations

Yjc = calculated sales

n = number of observations

m = number of constants in the regression equation
(8.4).

COEFFICIENT. This column repeats the partial (net)
regression coefficients given previously under B(J).

STD ERROR. This column records the standard error
for each of the b; sampling distributions. The standard error
of b is computetji

Sy. 234
K «/(X — X1 - R§ 234)

T STATISTIC. Any b; can be tested for significance by
using the z-test. Recall that the ¢ statistic is calculated:

§=2,3,4 (8.11)
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t=—2__ 2 i=2,3,4,...,k (8.12)

where

Null: B; = 0, and Alternative: B; # 0.

Hence, for X the calculated ¢ value using Equation 8.12
is 5.04505 and the table value at 0.05 level of significance
and 26 degrees of freedom (n — m) is 2.056. Thus by =
23.6197 is statistically significantly different from zero.

You may have noticed that the t-test for partial
regression coefficients serves essentially the same purpose as
the beta coefficients [see Beta (J)]; hence a high ¢ value
and the related high 8; provide similar results.

95 PERCENT CO)VFIDENCE LIMITS. The 95 percent
confidence limits for the population partial (net) regression
coefficients, (Bj), are established by

bj* tSp,§=2,3,4,...,k (8.13)

For example, the confidence limits for B, are

23.6197 £ (2.056)(4.68176)

13.99400 to 33.24540

We conclude with 0.96 re11ab111ty that sales mcrease
from between $13.99400 (x10 ) to $33.24540 (xIO ) for
each billion-dollar increase in new plant and equipment
expenditures (again, assuming all other explanatory
variables are held constant).

DURBIN-WATSON STATISTIC. The Durbin-Watson
test for autocorrelation in multiple regression is identical to
that for simple regression. Checking the calculated statistic
D = 1.16476 against critical table values, we conclude the
test is inconclusive for positive autocorrelation at a 0.05
significance level.

PLOT OF RESIDUALS. This section of the printout isa
chart of -the residual errors, €;, in the same downward
sequence as the time-series observations in Column 1 of
Table 8.1. The dotted vertical line in the middle of Figure
8.1, page 3, is the zero residual reference line, with positive
residuals plotted to the right and negative residuals to the
left. '

The plot of residuals is probably the most useful single
tool in the entire regression printout for diagnosing
inadequacies in a regression relationship. Residuals are used
to analyze homoscedasticity and linearity of functional
form. To illustrate both uses, it is convenient to start by
analyzing simple regression and then to show how to adapt
the methods to multiple regression.

Homoscedasticity (or uniform variance) related to the
time sequence of observations can be visually analyzed in
simple regression by determining whether the scatter of
plotted residuals is approximately constant, moving from
the first to the last observation.

1. If the scatter or dispersion of residuals gradually
increases as observations move forward in time, then one
kind of heteroscedasticity® is present and usually can be
effectively removed by a suitable transformation of one or
more variables (see Chapter 9). ’

2. If the scatter gradually decreases as observations move
forward in time, then another kind of heteroscedasticity is
present, but again this may be corrected by a different
suitable transformation.



3. If the dispersion is greater in the center of the time
series than at either end, then a more troublesome type of
heteroscedasticity is present. This type usually means that
either the explanatory variables are inadequate in the
wide-dispersion part of the time series of residuals, the
wrong functional regression form is being used, additional
normal or dummy explanatory variables are needed,
or some combination of these difficulties. (Again, see
Chapter 9.)

Homoscedasticity in residuals from multiple regression can
be analyzed analogously to the foregoing approach for
simple regression. The usual starting point is to test for
homogeneity in all simple regression residual patterns.
Next, make necessary transformations or other changes to
improve homoscedasticity, and then recalculate and plot
the residuals for multiple regression. If heteroscedasticity is
still present, the calculation of residuals for all possible
combinations of two explanatory variables and the
dependent sales variable is done, transforming or changing
until better homoscedasticity is achieved. Eventually this
process of analyzing residuals with one explanatory
variable, then with all combinations of two explanatory
variables, and so on, reveals the main sources of
heteroscedasticity.

Linearity of functional form can be tested from the
residuals in simple regression by visually determining
whether the residuals form a systematic nonuniform
pattern around the vertical zero reference line. For
example, if the residuals form a smooth curved pattern
rather than a straight line pattern, then an appropriate
nonlinear regression model will fit better than a linear one.

In multiple regression, if the same smooth curved
pattern of residuals appears, we also suspect nonlinearity
but need to make several tests to be certain of the fact, in
addition to finding where the nonlinearity lies: i.e., what
combinations of variables have nonlinear relationships? This
testing can be started by preparing residual plots of the
dependent sales variables with each single explanatory
variable, and devising appropriate nonlinear regression
transformations as necessary. Then the residuals must be
recalculated for the multiple regression to see if a linear
path of residuals appears. If nonlinearity is still present,
then the residuals of all combinations of two explanatory
variables with sales must be investigated, tramsforming as
necessary, and so forth, until a linear path of residuals for
the multiple regression model is finally obtained.

Linearity can be only partly inferred by a high R or R2,
which suggests the presence of a relationship useful as a
point of departure. But the only way to assure linearity in
the residuals is by first examining for nonlinearity and
removing it, if present, and then making reasonably certain
by trial and error that no higher R or R2 can be achieved
by other conceivable types of linear and nonlinear variable
transformations.

FIRST ORDER PARTIAL CORRELATIONS. Partial
correlation is a measure of the degree to which that part of
the variance in sales unexplained by the other explanatory
variables can be explained by the introduction of an
additional explanatory variable. The effect of the other
explanatory variable(s) is held constant. For example,
partial correlation coefficients, such as ry; 3, are referred

to as “first order” coefficients since one independent
variable is held constant: i.e., withholding the influence of
X3, what effect does Xy have on sales? “Second order”
coefficients are those where two independent variables are
held constant: i.e., ry 34 means withholding the influence
X3 and X4, what effect does X, have on sales? In cases
where no variables are held constant, the coefficients are of
“zero order.” Thus the order designation indicates how
many independent variables are held constant in the
analysis.

PREDICTED CONFIDENCE LIMITS. Most multiple
linear regression programs have a predicting option. In this
instance, a single-quarter sales forecast (4-1973) has been
made based on forecasted inputs for the independent
explanatory variables derived from a national econometric
model. Sales forecasts for 4-1973 through 4-1974 are
shown graphically in Figure 8.2, together with ““individual”
and “‘expected” confidence limits.

8.3 A Comparison of Standard
Errors of Regression: Multiple Linear
Regression vs. Time Trend

Yet another way to assess the value of multiple
regression over simple regression (see discussion under
Correlation Matrix) is by comparing standard deviations
of regression. From the Standard Deviation of Error
Term in Figure 8.1, the standard deviation of multiple
regression is reported as $17.1292 (x105). If the
standard deviations of simple regression were computed,
using each of the independent variables in turn, they would
all be larger than Sy 534. For example, sales as a function
of time results in Sy 4 = $34.5916(x105). We conclude
that time does not do as effective a job of describing sales
as does new plant and equipment expenditures, corporate
profits and inventory valuation, and time considered
collectively; this fact is measured by the larger standard
deviation of regression in the simple regression model as
compared to that for the multiple regression model.

8.4 Stepwise Multiple Regression

Before setting up a multiple regression relationship, the
forecaster must give serious consideration to the issues of
which explanatory variables and how many should be
included. To address these two questions, multivariate
linear regression analysis may be viewed as a stepwise
procedure in which the sales variable is regressed
successively on one explanatory variable at a time. The
order in which explanatory variables are taken is
determined sequentially by the most favorable partial
correlation coefficients.® This procedure for stepwise
multiple regression can best be shown by example. The
computer printout in Figure 8.3 records stepwise regression
results using the data developed earlier for Process Control
plus one additional explanatory variable, seasonally
adjusted manufacturing industrial production (Xs),
considered for illustrative purposes. In this printout, sales,
the dependent variable, is regressed first on the explanatory
variable new plant and equipment expenditures, X;, which
has the highest zero order partial correlation coefficient or
simple coefficient of correlation (see Correlation Matrix in
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Figure 8.2
Process Control Company

Actual Sales, Predicted Sales, and Sales Forecast

Sales: Million Dollars
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Figure 8.3

Process Control Company ) -

Stepwise Multiple Regression Using a Time-
Sharing Computer

STEP 1

VARIABLE SELECTED IS ¢es X 2

SUM OF SQUARES REDUCED IN THIS STEPeeses 18152.7
PROPORTION OF VARIANCE OF Y REDUCEDs e ss « 5377
PARTIAL F (D.F. = 1, 28 Jesecsesscscss 32.5667

CUMULATIVE SWM OF SQUARES REDUCEDe seses 18152.7
CUMULATIVE PROPORTION REDUCEDesesoocses o« 5377 (OF 33759.9 )

MULTIPLE CORRELATION COEFFICIENTeescssos « 73328
F FOR ANALYSIS OF VAR. (DsF. = | » 28 ) 324 5667
STANDARD ERROR OF ESTIMATEeeeeessesaces 23.6093

VARI ABL E REG. COEFF. STDe. ERR- COEF COMPUTED T
2 19.0941 3. 3459 5. 70673

INTERCEPT(A)-37. 5406

STEP 2

VARIABLE SELECTED IS eee X 4

SUM OF SQUARES REDUCED IN THIS STEPesos 7367.95
PROPORTION OF VARIANCE OF Y REDUCEDe e e e +218246
PARTIAL F (De Fo = 1, 27 )ooooooo.ooo. 24.‘448

CUMULATIVE SUM OF SQUARES REDUCEDesseee 25520. 6
CUMULATIVE PROPORTION REDUCEDeesssesees o« 755946 (OF 33759.9 )

MULTIPLE CORRELATION COEFFICIENTeeoesses 869451
F FOR ANALYSIS OF VARe. (DeFe = 2 , 27 ) 41.8156
STANDARD ERROR OF ESTIMATEceeeesoceceee 17.4687

VARIABLE REG. COEFF. STDes ERR- COEF COMPUTED T
2 28. 6824 3. 15222 9. 09909
4 -2. 30542 e 4691717 -4.91374

INTERCEPT(A)-146.163
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Figure 8.3 page 2

STEP 3

VARIABLE SELECTED IS ¢es X 3

SUM OF SQUARES REDUCED IN THIS STEPeesees 610.392
PROPORTION OF VARIANCE OF ¥ REDUCEDeses «180804E-01
PARTIAL F (DeFe = 1, 26 )deesseccsencne 2. 08029

CUMULATIVE SUM OF SQUARES REDUCEDsssess 26131

CUMULATIVE PROPORTION REDUCEDececscescecee 774026 (OF 337359.9

MULTIPLE CORRELATION COEFFICIENTeeceecee «879787
F FOR ANALYSIS OF VAR. (DeFe = 3 , 26 ) 29. 68 58
STANDARD ERROR OF ESTIMATEccescceccscss 17.1294

VARIABL E REG. COEFF. STD. ERR~ COEF COMPUTED T
2 23.6162 4. 67888 S« 04741

4 -1e77597 « 588563 -3.01747

3 1.40294 «972693 1. 44232

INTERCEPT(A)>-188.787

STEP 4

VARIABLE SELECTED IS ee¢ X S

SUM OF SQUARES REDUCED IN THIS STEPesse 53.0547
PROPORTION OF VARIANCE OF Y REDUCEDeesse «157153E-02
PARTIAL F (DeFe = 1, 25 Jeoecocccssces « 17508

CMULATIVE SUM OF SQUARES REDUCEDeecece 2613441

CUMULATIVE PROPORTION REDUCEDececsccesee 775597 (OF 33759.9

MULTIPLE CORRELATION COEFFICIENTesessess 88068
F FOR ANALYSIS OF VAR. (D.F. = 4 , 25 ) 21. 6017
STM’DARD ERROR OF ESTIMATE............. 17. 4078

VARIABLE REG. COEFF. STDe ERR- COEF COMPUTED T
2 22. 5993 5. 33998 4. 2321
4 -2.06171 «907808 -2.27109
3 1.21992 1. 08094 1. 12858
5 « 610749 1. 45964 « 418426

INTERCEPT(A)-219. 637




Figure 8.1). This means that, when taken individually, X,
explains the most sales variability among the four
independent variables under consideration. Next, by
comparing the first order partial correlation’ coefficients
(withholding the effects of Xj), time trend, Xy, explains
the largest fraction of the previously unexplained variance
in sales. The process continues in this manner, comparing
higher order partial correlation coefficients recalculated at
each step, and X3 and X are entered in succession. Thus
using all four explanatory variables results in Ry 7345 =
0.88068. Notice that the inclusion of an additional
explanatory variable will increase the R (or R2 ) value if the
variable has any explanatory usefulness, and smce the main
objective is to obtain a value of R (or R2) as high as
possible without violating the assumptions of linear
regression, we may fallaciously be led to continue
indiscriminately including many independent variables with
the aid of computers.

As a practical matter it is not desirable to have too many
variables in a regression model. Generally, only those
variables that are believed to make an important
contribution to the effectiveness of the predicting equation
should be included, since using a large number of variables
in the forecasting equation creates the inevitable problems
of losing valuable degrees of freedom and of needing to
obtain observations to be applied in subsequent forecasts.
Moreover, interpretation of the influence of each
independent variable on sales becomes quite complex.

The answer to which and how many variables to include
is dictated by the practical considerations of appropriate
causal analysis and the explanatory variables forecast
availability. Using the stepwise approach to multiple
regression is one objective way to assess the magnitude of
mathematical relationship among variables. The variable
manufacturing industrial production, X5, was dropped
from the analysis in Section 8.2 because of its small
contribution to reducing the standard error or regression in
exchange for the additional degree of freedom lost. Also,
though not shown in Figure 8.3, the Durbin-Watson
statistic deteriorated somewhat when X5 was added into
the analysis.

3.5 Reviewing the Assumptions
of Multiple Regression Analysis

As a practical matter, primarily due to limited time and
financial resources, frequently it is not possible to develop a
model which satisfies all five of the assumptions of multiple
regression analysis. In forecasting sales, then, what are the
comparative importances and tradeoffs dictating the
priorities relative to satisfying or violating underlying
assumptions of regression modeling?

We suggest the following hierarchy, beginning with the
most important assumption. After each title a brief review
is given of how to test for the assumption’s valldlty

1. Linearity. Test for significant R (or R ) using the F
ratio; and/or test regression coefficients, the b, using the ¢
statistic. Then test for possible improvement by the steps
described in Section 8.2 under “Plot of Residuals.” See
Tufte for a good graphic illustration of improving the R2
with nonlinear regression.

2. Independence. Check for autocorrelation using the
Durbin-Watson test.

3. Homoscedasticity. Uniform dispersion of data points
is usually determined subjectively by visual inspection of a
good graph. A more rigorous statistical test is accomplished
by regressing the actual Y values on their respective
residuals; if the resultmg R (or R?) is significant (by an

F-test), then variances are not homogeneous and this
assumption is violated. Graphic analyses of
homoscedasticity were also described in Section 8.2 under
“Plot of Residuals.”

4. Normality. Determine graphically from the plot of
residuals if the normality percentages hold for the model in
question, using these bench marks:

Y. * Sy x includes about 68 percent

.Y *2Sy x includes about 95 percent

Y + 3Sy x includes about 99 percent

S. Non-multzcollmearzty R’s (or R2 ’s) for combmatlons
of simple and multiple correlations among explanatory
variables using the rule of thumb that R > 0.85 suggest the
presence of significant multicollinearity.

By far the most critical of these five assumptions are
linearity and independence. Often through the process of
developing a regression model that satisfies these two
assumptions (see Chapter 9), the remaining three
automatically become satisfied. This is not to say, however,
that homoscedasticity, normality, and non-multicollinearity
are unimportant, but rather their significance in the field of
sales forecasting by regression is at a quantum level below
that for the linearity and independence assumptions.

The following statements provided by Neter and
Wasserman summarize their views on normality and
non-multicollinearity in predicting by linear regression
models:

“Lack of normality is not an important matter, provided
the departure from normality is not of extreme form.”!!

“High multicollinearity is usually not a problem when

the purpose of the regression analysis is to make inferences

on the response function or predictions of new
observations, provided these inferences are made within the
range of observations.”! 2

8.6 Advantages and
Disadvantages of Causal Regression Models

The advantages of using regression models to forecast
sales are several, as follows:

1. The method gives quantitative evaluation of economic
and market forces, both external and internal.

2. Statistical estimates of confidence can be developed,
though they are subject to many types of error.

3. Genuine causal relationships are more stable and lead
to more accurate forecasts than other techniques.

4. Turning points in leading explanatory variables help
predict turns in company sales.

Disadvantages of causal regression models include:

1. The method is usually time consuming and costly.

2. Historical data may be insufficient.

3. A combination of all possible errors yields wide
confidence intervals.

4. A high level of statistical expertise is needed.
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5. The regression equation may lack flexibility.
6. It may not be possible to forecast explanatory
variables with adequate accuracy.

Footnotes

1. In computer printouts, the order depends on the way in which
the program is written. Careful inspection of the output should
always be made, and you should not assume that any particular
order is standard.

2. B(J) here is the computer time-share terminal’s equivalent form
of bj in Equation 8.3. The capital letter B is used because the
terminal does not have lower case letters. Thus B(J) =b i and should
not be confused with the population parameter Bj (e.g., in Equation
7.1).

3. A negative partial regression coefficient for time trend
(—1.77628) does not necessarily imply that sales diminish with the
passage of time. You may recall that this figure indicates “net”
effect, and so in this instance serves as a slope adjustment for the
multiple regression model in Equation 8.4. ’

4, Of course, for sales this equation more appropriately reads: Y=

ZYi/n.

5. Again, for sales the correct nomenclature is:

S = 2(Y; - Y)2
Y n-1

6. See L.R. Klein, An Introduction to Econometrics (Englewood
Cliffs, New Jersey, Prentice-Hall, 1962), p. 101.

7. In sales forecasting very high multicollinearity of, say, R=09is
undesirable.

8. “Heteroscedasticity” denotes violation of the assumption of
homoscedasticity (equal variances in Yj throughout the range of X,
observations).

9, This “stepwise” procedure is sometimes termed ‘“‘forward
selection.” In addition to it, Draper and Smith discuss five other
algorithms for choosing variables in regression analysis; and they
note the lack of a single universally accepted approach. See N.R.
Draper and H. Smith, Applied Regression Analysis (New York,
Wiley, 1966), pp. 163-177. :

10. Edward R. Tufte, Data Analysis for Politics and Policy
(Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1974), pp.
116-117.

11. John Neter and William Wasserman, Applied Linear Statistical
Models (Homewood, Ilinois, Richard D. Irwin, Inc., 1974),
p. 513.

12. Ibid., p. 345.
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